PERSIST: A Multimodal Dataset for the Prediction of Perceived Exertion during Resistance Training

Author:

Albert Justin AmadeusORCID,Herdick Arne,Brahms Clemens MarkusORCID,Granacher UrsORCID,Arnrich BertORCID

Abstract

Measuring and adjusting the training load is essential in resistance training, as training overload can increase the risk of injuries. At the same time, too little load does not deliver the desired training effects. Usually, external load is quantified using objective measurements, such as lifted weight distributed across sets and repetitions per exercise. Internal training load is usually assessed using questionnaires or ratings of perceived exertion (RPE). A standard RPE scale is the Borg scale, which ranges from 6 (no exertion) to 20 (the highest exertion ever experienced). Researchers have investigated predicting RPE for different sports using sensor modalities and machine learning methods, such as Support Vector Regression or Random Forests. This paper presents PERSIST, a novel dataset for predicting PERceived exertion during reSIStance Training. We recorded multiple sensor modalities simultaneously, including inertial measurement units (IMU), electrocardiography (ECG), and motion capture (MoCap). The MoCap data has been synchronized to the IMU and ECG data. We also provide heart rate variability (HRV) parameters obtained from the ECG signal. Our dataset contains data from twelve young and healthy male participants with at least one year of resistance training experience. Subjects performed twelve sets of squats on a Flywheel platform with twelve repetitions per set. After each set, subjects reported their current RPE. We chose the squat exercise as it involves the largest muscle group. This paper demonstrates how to access the dataset. We further present an exploratory data analysis and show how researchers can use IMU and ECG data to predict perceived exertion.

Funder

HPI Research School of Data Science and Engineering

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A computer vision approach to continuously monitor fatigue during resistance training;Biomedical Signal Processing and Control;2024-03

2. AI Enhanced Resistance Training: Segmentation and Velocity Tracking Using Computer Vision;2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3