Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis

Author:

Jiang Yuli12,Liang Jian2ORCID,Wang Chunyan2,Tan Li2,Kawano Yoji3ORCID,Nagawa Shingo2

Affiliation:

1. Institute for Translational Brain Reaearch, Fudan University, Shanghai 200032, China

2. Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 200032, China

3. Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan

Abstract

Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells.

Funder

National Natural Science Foundation in China

Chinese Academy of Sciences Hundred Talents Program

Chinese Academy of Sciences

Shanghai Center for Plant Stress Biology

CAS Center of Excellence for Molecular Plant Sciences

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3