Spatial-Temporal Signals and Clinical Indices in Electrocardiographic Imaging (I): Preprocessing and Bipolar Potentials

Author:

Caulier-Cisterna RaúlORCID,Sanromán-Junquera MargaritaORCID,Muñoz-Romero SergioORCID,Blanco-Velasco ManuelORCID,Goya-Esteban RebecaORCID,García-Alberola ArcadiORCID,Rojo-Álvarez José LuisORCID

Abstract

During the last years, Electrocardiographic Imaging (ECGI) has emerged as a powerful and promising clinical tool to support cardiologists. Starting from a plurality of potential measurements on the torso, ECGI yields a noninvasive estimation of their causing potentials on the epicardium. This unprecedented amount of measured cardiac signals needs to be conditioned and adapted to current knowledge and methods in cardiac electrophysiology in order to maximize its support to the clinical practice. In this setting, many cardiac indices are defined in terms of the so-called bipolar electrograms, which correspond with differential potentials between two spatially close potential measurements. Our aim was to contribute to the usefulness of ECGI recordings in the current knowledge and methods of cardiac electrophysiology. For this purpose, we first analyzed the basic stages of conventional cardiac signal processing and scrutinized the implications of the spatial-temporal nature of signals in ECGI scenarios. Specifically, the stages of baseline wander removal, low-pass filtering, and beat segmentation and synchronization were considered. We also aimed to establish a mathematical operator to provide suitable bipolar electrograms from the ECGI-estimated epicardium potentials. Results were obtained on data from an infarction patient and from a healthy subject. First, the low-frequency and high-frequency noises are shown to be non-independently distributed in the ECGI-estimated recordings due to their spatial dimension. Second, bipolar electrograms are better estimated when using the criterion of the maximum-amplitude difference between spatial neighbors, but also a temporal delay in discrete time of about 40 samples has to be included to obtain the usual morphology in clinical bipolar electrograms from catheters. We conclude that spatial-temporal digital signal processing and bipolar electrograms can pave the way towards the usefulness of ECGI recordings in the cardiological clinical practice. The companion paper is devoted to analyzing clinical indices obtained from ECGI epicardial electrograms measuring waveform variability and repolarization tissue properties.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3