Abstract
The electrocardiogram records the heart’s electrical activity and generates a significant amount of data. The analysis of these data helps us to detect diseases and disorders via heart bio-signal abnormality classification. In unbalanced-data contexts, where the classes are not equally represented, the optimization and configuration of the classification models are highly complex, reflecting on the use of computational resources. Moreover, the performance of electrocardiogram classification depends on the approach and parameter estimation to generate the model with high accuracy, sensitivity, and precision. Previous works have proposed hybrid approaches and only a few implemented parameter optimization. Instead, they generally applied an empirical tuning of parameters at a data level or an algorithm level. Hence, a scheme, including metrics of sensitivity in a higher precision and accuracy scale, deserves special attention. In this article, a metaheuristic optimization approach for parameter estimations in arrhythmia classification from unbalanced data is presented. We selected an unbalanced subset of those databases to classify eight types of arrhythmia. It is important to highlight that we combined undersampling based on the clustering method (data level) and feature selection method (algorithmic level) to tackle the unbalanced class problem. To explore parameter estimation and improve the classification for our model, we compared two metaheuristic approaches based on differential evolution and particle swarm optimization. The final results showed an accuracy of 99.95%, a F1 score of 99.88%, a sensitivity of 99.87%, a precision of 99.89%, and a specificity of 99.99%, which are high, even in the presence of unbalanced data.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference48 articles.
1. Cardiovascular Diseaseshttps://www.who.int/health-topics/cardiovascular-diseases/
2. Computer-aided Arrhythmia Diagnosis with Bio-signal Processing
3. ECG from Basics to Essentials: Step by Step;Stroobandt,2016
4. ECG signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence;Gacek,2011
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献