A Metaheuristic Optimization Approach for Parameter Estimation in Arrhythmia Classification from Unbalanced Data

Author:

Carrillo-Alarcón Juan CarlosORCID,Morales-Rosales Luis AlbertoORCID,Rodríguez-Rángel HéctorORCID,Lobato-Báez MarianaORCID,Muñoz AntonioORCID,Algredo-Badillo IgnacioORCID

Abstract

The electrocardiogram records the heart’s electrical activity and generates a significant amount of data. The analysis of these data helps us to detect diseases and disorders via heart bio-signal abnormality classification. In unbalanced-data contexts, where the classes are not equally represented, the optimization and configuration of the classification models are highly complex, reflecting on the use of computational resources. Moreover, the performance of electrocardiogram classification depends on the approach and parameter estimation to generate the model with high accuracy, sensitivity, and precision. Previous works have proposed hybrid approaches and only a few implemented parameter optimization. Instead, they generally applied an empirical tuning of parameters at a data level or an algorithm level. Hence, a scheme, including metrics of sensitivity in a higher precision and accuracy scale, deserves special attention. In this article, a metaheuristic optimization approach for parameter estimations in arrhythmia classification from unbalanced data is presented. We selected an unbalanced subset of those databases to classify eight types of arrhythmia. It is important to highlight that we combined undersampling based on the clustering method (data level) and feature selection method (algorithmic level) to tackle the unbalanced class problem. To explore parameter estimation and improve the classification for our model, we compared two metaheuristic approaches based on differential evolution and particle swarm optimization. The final results showed an accuracy of 99.95%, a F1 score of 99.88%, a sensitivity of 99.87%, a precision of 99.89%, and a specificity of 99.99%, which are high, even in the presence of unbalanced data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. Cardiovascular Diseaseshttps://www.who.int/health-topics/cardiovascular-diseases/

2. Computer-aided Arrhythmia Diagnosis with Bio-signal Processing

3. ECG from Basics to Essentials: Step by Step;Stroobandt,2016

4. ECG signal Processing, Classification and Interpretation: A Comprehensive Framework of Computational Intelligence;Gacek,2011

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3