Synergistic Effect on the Thermomechanical and Electrical Properties of Epoxy Composites with the Enhancement of Carbon Nanotubes and Graphene Nano Platelets

Author:

Jen Yi-Ming,Huang Jui-Cheng

Abstract

The synergetic effect of adding multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) on the thermomechanical properties and electric resistance of epoxy polymers were experimentally analyzed in this study. The total content of two employed carbon fillers were kept constant at 0.4 wt %, and seven filler ratios between two fillers (MWCNTs:GNPs), i.e., 10:0, 1:9, 3:7, 5:5, 7:3, 9:1, and 0:10, were considered in the experimental program to investigate the influences of employed nano-filler ratios on the viscoelastic and electrical properties of the studied nanocomposites. The thermomechanical properties and the sheet resistance of the nanocomposites were analyzed using a dynamic mechanical analyzer and four-point probe, respectively. Moreover, the thermogravimetric analyzer was utilized to measure the pyrolysis temperature of the nanocomposites. Experimental results show that the synergistic effect of adding two nano-fillers were clear for the improvement of the storage moduli, glass transition temperatures, and electric conductivity. Oppositely, the employment of two fillers has a slight effect on the pyrolysis temperatures of the studied nanocomposites. The composites with the MWCNT:GNP ratio of 1:9 display the most apparent enhancement of the thermomechanical properties. The improvement results from the uniform distribution and the high aspect ratio of GNPs. The addition of a small amount of MWCNTs provides more linkage in the matrix. Moreover, the specimens with the MWCNT:GNP ratio of 1:9 shows remarkable electrical properties, which result from the large contact surface areas of GNPs with each other. The employment of few MWCNTs plays an important bridging role between the layered GNPs.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3