Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb1.7Si2.4Ti2.4Al3Hf0.5 and Nb1.3Si2.4Ti2.4Al3.5Hf0.4 Alloys

Author:

Ghadyani Mohammad,Utton Claire,Tsakiropoulos PanosORCID

Abstract

Nb–silicide based alloy will require some kind of coating system. Alumina forming alloys that are chemically compatible with the Nb–silicide based alloy substrate could be components of such systems. The intermetallic alloys Nb1.7Si2.4Ti2.4Al3Hf0.5 and Nb1.3Si2.4Ti2.4Al3.5Hf0.4 were studied in the cast, heat treated and isothermally oxidised conditions at 800 and 1200 °C to find out if they are alumina scale formers. The alloys were designed using the alloy design methodology NICE and were required (i) not to have stable solid solution phase in their microstructures; (ii) not to pest and (iii) to form alumina scale. Their microstructures consisted of silicides and aluminides. Both alloys satisfied (i) and (ii) and formed thin scales at 800 °C. At 1200 °C the former alloy suffered from internal oxidation and formed alumina intermixed with Ti rich oxide beneath a thick “layered” scale of mixed oxides that contained Ti and/or Al and/or Si. There was no internal oxidation in the latter alloy that formed a thin continuous well adhering α-Al2O3 scale that was able to repair itself during oxidation at 1200 °C. In both alloys there was severe macrosegregation of Si, which in Nb1.3Si2.4Ti2.4Al3.5Hf0.4 was almost double that in Nb1.7Si2.4Ti2.4Al3Hf0.5. The severe macrosegregation of Si contributed to the formation of a “layered” structure in the former alloy that was retained at 800 and 1200 °C. Both alloys met the “standard definition” of High Entropy Alloys (HEAs). Compared with the range of values of the parameters valence band (VEC), δ and Δχ of bcc solid solution plus intermetallic(s) HEAs, only the Δχ of the alloy Nb1.7Si2.4Ti2.4Al3Hf0.5 was within the range and the parameters VEC and δ of both alloys respectively were outside and within the corresponding ranges. The alloy Nb1.3Si2.4Ti2.4Al3.5Hf0.4 exhibited strong correlations between the parameters Δχ, δ and VEC, and the range of values of each parameter was wider compared with the alloy Nb1.7Si2.4Ti2.4Al3Hf0.5. There was a strong correlation only between the parameters Δχ and δ of the latter alloy that was similar to that of the former alloy.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3