The Nature-Inspired Metaheuristic Method for Predicting the Creep Strain of Green Concrete Containing Ground Granulated Blast Furnace Slag

Author:

Sadowski Łukasz,Nikoo Mohd,Shariq Mohd,Joker Ebrahim,Czarnecki SławomirORCID

Abstract

The aim of this study was to develop a nature-inspired metaheuristic method to predict the creep strain of green concrete containing ground granulated blast furnace slag (GGBFS) using an artificial neural network (ANN)model. The firefly algorithm (FA) was used to optimize the weights in the ANN. For this purpose, the cement content, GGBFS content, water-to-binder ratio, fine aggregate content, coarse aggregate content, slump, the compaction factor of concrete and the age after loading were used as the input parameters, and in turn, the creep strain (εcr) of the GGBFS concrete was considered as the output parameters. To evaluate the accuracy of the FA-ANN model, it was compared with the well-known genetic algorithm (GA), imperialist competitive algorithm (ICA) and particle swarm optimization (PSO). Results indicated that the ANNs model, in which the weights were optimized by the FA, were more capable, flexible and precise than other optimization algorithms in predicting the εcr of GGBFS concrete.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3