Effect of Zn/Mg Ratios on Microstructure and Stress Corrosion Cracking of 7005 Alloy

Author:

Wang Shuai,Luo Binghui,Bai Zhenhai,He Chuan,Tan Sizhi,Jiang Gen

Abstract

The effects of different Zn/Mg ratios on the microstructure, mechanical properties and resistance of stress corrosion cracking of peak-aged 7005 aluminum alloy were investigated. It was found that the Zn/Mg ratio played a very important role in controlling the aging time, the electrical conductivity of the hardness peak point and the resistance of stress corrosion cracking of the alloy. With the increase of Zn/Mg ratio (wt. %), the time taken by the alloy to achieve the peak hardness value gradually increases aging at 120 °C. When the Zn/Mg ratio is in the range from 2.27% to 2.62%, the precipitate phase of the alloy after peak-aged is mainly dominated by smaller disc-like η’ phase and GP I (Guinier Preston) zones, the grain boundary precipitates are slender and continuous and the PFZ (precipitate free zones) is narrow. However when this value is in the range from 3.01% to 4.08%, precipitation phase in matrix of the alloy is mainly composed of short-rod η′ phase and GP II zones, the precipitation phases within the grain boundary are large and distribute intermittently and the PFZ is narrower. The results of SSRT (slow strain rate tests) show that when Zn/Mg ≥ 3.61, the 7005 aluminum alloy at peak-aged has good resistance of stress corrosion cracking in 3.5% NaCl + 0.5% H2O2 aqueous solution. However, when Zn/Mg ≤ 3.01, the strength of the alloy sharply decreases in 3.5% (wt. %) NaCl + 0.5% (wt. %) H2O2 aqueous solution.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3