The Fractional Step Method versus the Radial Basis Functions for Option Pricing with Correlated Stochastic Processes

Author:

Kagraoka Yusho

Abstract

In option pricing models with correlated stochastic processes, an option premium is commonly a solution to a partial differential equation (PDE) with mixed derivatives in more than two space dimensions. Alternating direction implicit (ADI) finite difference methods are popular for solving a PDE with more than two space dimensions; however, it is not straightforward to employ the ADI method for solving a PDE with mixed derivatives. The aim of this study is to find out which numerical method would be appropriate to solve PDEs with mixed derivatives based on the accuracy of the solutions and the computation time. This study applies the fractional step method and the radial basis functions to solve a PDE with a mixed derivative, and investigates the efficiency of these numerical methods. Numerical experiments are conducted by applying these methods to exchange option pricing; exchange options are selected because the exchange option premium has an analytical form. The numerical results show that the both methods calculate premiums with high accuracy in the presence of mixed derivatives. The fractional step method calculates the option premium more accurately and much faster than the radial basis functions. Therefore, from the numerical experiments, this study concludes that the fractional step method is more appropriate than the radial basis functions for solving a PDE with a mixed derivative.

Publisher

MDPI AG

Subject

Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3