Identifying the Locations of Atmospheric Pollution Point Source by Using a Hybrid Particle Swarm Optimization

Author:

Chaiwino Wipawinee,Manorot Panasun,Poochinapan Kanyuta,Mouktonglang Thanasak

Abstract

This research aims to improve the particle swarm optimization (PSO) algorithm by combining a multidimensional search with a line search to determine the location of the air pollution point sources and their respective emission rates. Both multidimensional search and line search do not require the derivative of the cost function. By exploring a symmetric property of search domain, this innovative search tool incorporating a multidimensional search and line search in the PSO is referred to as the hybrid PSO (HPSO). Measuring the pollutant concentration emanating from the pollution point sources through the aid of sensors represents the first stage in the process of evaluating the efficiency of HPSO. The summation of the square of the differences between the observed concentration and the concentration that is theoretically expected (inverse Gaussian plume model or numerical estimations) is used as a cost function. All experiments in this research are therefore conducted using the HPSO sensing technique. To effectively identify air pollution point sources as well as calculate emission rates, optimum positioning of sensors must also be determined. Moreover, the frame of discussion of this research also involves a detailed comparison of the results obtained by the PSO algorithm, the GA (genetic algorithm) and the HPSO algorithm in terms of single pollutant location detection, respectively. In the case of multiple sources, only the findings based on PSO and HPSO algorithms are taken into consideration. This research eventually verifies and confirms that the HPSO does offer substantially better performance in the measuring of pollutant locations as well as emission rates of the air pollution point sources than the original PSO.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taking Flight for a Greener Planet: How Swarming Could Help Monitor Air Pollution Sources;Electronics;2024-01-31

2. An Approach to Locating Unknown Sources of Increased Air Emissions;2023 16th International Conference Management of large-scale system development (MLSD);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3