Synergy Analysis of the Influence of the Connection Cone on the Thermal Distribution during Regeneration

Author:

Mu MingfeiORCID,Dou Lizhuang,Aslam Jawad,Chen Bisheng

Abstract

Diesel particulate filters (DPF) are typically used for particle filtration in vehicle exhausts after a treatment system. The monolith inside a DPF is a symmetrical column structure, frequently an axisymmetric cylinder structure where filtration and regeneration occur. Due to the complex structure before the symmetric monolith, the internal particle distribution is not uniform, which leads to an uneven temperature change when regeneration occurs. During thermal regeneration, the temperature field inside a DPF is affected by the particle load, exhaust temperature and exhaust flow. The relationship between the temperature gradient and velocity vector is also a key factor influencing regeneration performance. Based on the particle-loading test method, a bench for thermal distribution testing during regeneration was built. Via experiments and simulations, the temperature field in an axisymmetric monolith during particle combustion given an uneven particle distribution was analyzed. Through field synergy analysis of the temperature and velocity fields in the monolith, the influence of connection cones with different structures on heat transfer enhancement was studied. The results indicated that compared with a monolith with a conventional linear cone, the radial temperature gradient is 1.1 °C/mm lower, the area of enhanced regeneration is larger, and the regeneration rate is improved in the monolith with a streamlined cone.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3