The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation—New Perspectives against Global Warming

Author:

Mountourakis Fanourios,Papazi Aikaterini,Kotzabasis KiriakosORCID

Abstract

In the present contribution, the differentiation in the molecular structure and function of the photosynthetic apparatus of the unicellular green alga Chlorella vulgaris was studied at several light intensities (0–400 μmol m−2 s−1) and various CO2 concentrations (0.04–60% CO2), in completely autotrophic conditions. Asymmetries that occur by different light intensities and CO2 concentrations induce metabolic and functional changes. Using chlorophyll fluorescence induction techniques (OJIP test), we showed that Chlorella vulgaris tolerates extremely high CO2 levels and converts them photosynthetically into valuable products, including O2 and biomass rich in carbohydrates and lipids. Interestingly, the microalga Chlorella vulgaris under extremely high CO2 concentrations induces a new metabolic state intensifying its photosynthetic activity. This leads to a new functional symmetry. The results highlight a potent CO2 bio-fixation mechanism of Chlorella vulgaris that captures up to 288 L CO2 L PCV−1 day−1 under optimal conditions, therefore, this microalga can be used for direct biological CO2-reducing strategies and other green biotechnological applications. All of the above suggest that Chlorella vulgaris is one of the most prominent competitors for a closed algae-powered bioreactor that is able to consume huge amounts of CO2. Thus, it is a sustainable and natural bioenergetic system with perspectives in dealing with major environmental issues such as global warming. In addition, Chlorella vulgaris cultures could also be used as bioregeneration systems in extraterrestrial missions for continuous atmospheric recycling of the human settlements, paving the way for astrobiological applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3