Abstract
There are many methods of searching for traces of the so-called new physics in particle physics. One of them, and the main focus of this paper, is athe study of the Z-boson decay in e+e− collisions. An improvement in the precision of calculations of the Standard Model (SM) electroweak pseudo-observables, such as scattering asymmetries, effective weak mixing angles, and decay widths, related to the Z-boson will meet severe experimental requirements at the planned e+e− colliders and will increase the chance to detect non-standard effects in experimental analysis. To reach this goal, one has to calculate the next order of perturbative SM theory, namely three-loop Feynman integrals. We discuss the complexity of the problem, as well as the methods crucial for completing three-loop calculations. We show several numerical solutions for some three-loop Feynman integrals using sector decomposition, Mellin–Barnes (MB), and differential equation methods.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference50 articles.
1. Precision electroweak measurements on the Z resonance
2. International Linear Collider Reference Design Report Volume 2: Physics at the ILC;Djouadi;arXiv,2007
3. Physics at the $$e^+ e^-$$ e + e - linear collider
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献