Current In Vitro Models to Study Varicella Zoster Virus Latency and Reactivation

Author:

Baird Nicholas,Zhu Shuyong,Pearce Catherine,Viejo-Borbolla AbelORCID

Abstract

Varicella zoster virus (VZV) is a highly prevalent human pathogen that causes varicella (chicken pox) during primary infection and establishes latency in peripheral neurons. Symptomatic reactivation often presents as zoster (shingles), but it has also been linked to life-threatening diseases such as encephalitis, vasculopathy and meningitis. Zoster may be followed by postherpetic neuralgia, neuropathic pain lasting after resolution of the rash. The mechanisms of varicella zoster virus (VZV) latency and reactivation are not well characterized. This is in part due to the human-specific nature of VZV that precludes the use of most animal and animal-derived neuronal models. Recently, in vitro models of VZV latency and reactivation using human neurons derived from stem cells have been established facilitating an understanding of the mechanisms leading to VZV latency and reactivation. From the models, c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase (PI3K) and nerve growth factor (NGF) have all been implicated as potential modulators of VZV latency/reactivation. Additionally, it was shown that the vaccine-strain of VZV is impaired for reactivation. These models may also aid in the generation of prophylactic and therapeutic strategies to treat VZV-associated pathologies. This review summarizes and analyzes the current human neuronal models used to study VZV latency and reactivation, and provides some strategies for their improvement.

Funder

National Institutes of Health

Niedersächsische Ministerium für Wissenschaft und Kultur

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3