Audio Anti-Spoofing Based on Audio Feature Fusion

Author:

Zhang Jiachen1,Tu Guoqing1,Liu Shubo2,Cai Zhaohui2

Affiliation:

1. Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

2. School of Computer Science, Wuhan University, Wuhan 430072, China

Abstract

The rapid development of speech synthesis technology has significantly improved the naturalness and human-likeness of synthetic speech. As the technical barriers for speech synthesis are rapidly lowering, the number of illegal activities such as fraud and extortion is increasing, posing a significant threat to authentication systems, such as automatic speaker verification. This paper proposes an end-to-end speech synthesis detection model based on audio feature fusion in response to the constantly evolving synthesis techniques and to improve the accuracy of detecting synthetic speech. The model uses a pre-trained wav2vec2 model to extract features from raw waveforms and utilizes an audio feature fusion module for back-end classification. The audio feature fusion module aims to improve the model accuracy by adequately utilizing the audio features extracted from the front end and fusing the information from timeframes and feature dimensions. Data augmentation techniques are also used to enhance the performance generalization of the model. The model is trained on the training and development sets of the logical access (LA) dataset of the ASVspoof 2019 Challenge, an international standard, and is tested on the logical access (LA) and deep-fake (DF) evaluation datasets of the ASVspoof 2021 Challenge. The equal error rate (EER) on ASVspoof 2021 LA and ASVspoof 2021 DF are 1.18% and 2.62%, respectively, achieving the best results on the DF dataset.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derin Sahte Ses Manipülasyonu Tespit Sistemleri Üzerine Bir Derleme;Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2024-04-30

2. Optimization of Coverage and Capacity Using Smart Antennae;Applied Sciences;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3