Author:
Yang Jianhua,Wu Jianjun,Liu Leizhen,Zhou Hongkui,Gong Adu,Han Xinyi,Zhao Wenhui
Abstract
Understanding the winter wheat yield responses to drought are the keys to minimizing drought-related winter wheat yield losses under climate change. The research goal of our study is to explore the response patterns of winter wheat yield to drought in the North China Plain (NCP) and then further to study which climatic factors drive the response patterns. For this purpose, winter wheat yield was simulated by the Environmental Policy Integrated Climate (EPIC) crop model. Drought was quantified by standardized precipitation evapotranspiration index (SPEI), and the contributions of the various climatic factors were evaluated using predictive discriminant analysis (PDA) method. The results showed that the responses of winter wheat yield to different time-scale droughts have obvious spatial differences from the north part to the south part in the NCP. Winter wheat yield is more sensitive to the medium (6–9 months) and long (9–12 months) time-scale droughts that occurred in the key growth periods (April and May). The different response patterns of winter wheat yield to the different time-scale droughts are mainly controlled by temperature and water balance (precipitation minus potential evapotranspiration) in winter in the NCP. Compared with the water balance, temperature plays a more important role in driving the response pattern characteristics. These findings can provide a reference on how to reduce drought influences on winter wheat yield in the NCP.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献