Potential of Microalgae as Functional Foods Applied to Mitochondria Protection and Healthy Aging Promotion

Author:

Zanella Lorenzo1,Vianello Fabio1ORCID

Affiliation:

1. Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy

Abstract

The rapid aging of the Western countries’ populations makes increasingly necessary the promotion of healthy lifestyles in order to prevent/delay the onset of age-related diseases. The use of functional foods can significantly help to achieve this aim, thanks to the contribution of biologically active compounds suitable to protect cellular and metabolic homeostasis from damage caused by stress factors. Indeed, the excessive production of reactive oxygen species (ROS), favored by incorrect eating and behavioral habits, are considered causal elements of oxidative stress, which in turn favors tissue and organism aging. Microalgae represent a convenient and suitable functional food because of their extraordinary ability to concentrate various active compounds, comprising omega-3 polyunsaturated fatty acids, sterols, phenolic compounds, carotenoids and others. Within cells, mitochondria are the cellular organelles most affected by the accumulation of molecular damage produced by oxidative stress. Since, in addition to producing the chemical energy for cellular metabolism, mitochondria control numerous cell cycle regulation processes, including intrinsic apoptosis, responses to inflammatory signals and other biochemical pathways, their dysfunction is considered decisive for many pathologies. Among these, some degenerative diseases of the nervous system, cardiovascular system, kidney function and even cancer are found. From this viewpoint, bioactive compounds of microalgae, in addition to possessing high antioxidant properties, can enhance mitochondrial functionality by modulating the expression of numerous protective factors and enzymes, which in turn regulate some essential biochemical pathways for the preservation of the functional integrity of the cell. Here, we summarize the current knowledge on the role played by microalgal compounds in the regulation of the mitochondrial life cycle, expression of protective and reparative enzymes, regulation of intrinsic apoptosis and modulation of some key biochemical pathways. Special attention was paid to the composition of some cultivable microalgae strains selected for their high content of active compounds suitable to protect and improve mitochondrial functions.

Publisher

MDPI AG

Reference271 articles.

1. Chapter 1—The Global Demography of Aging: Facts, Explanations, Future;Piggott;Handbook of the Economics of Population Aging,2016

2. The Effect of Population Aging on Health Expenditure Growth: A Critical Review;Wouterse;Eur. J. Ageing,2013

3. Aging in China: Perspectives on Public Health;Han;Glob. Health J.,2020

4. The Social, Economic, and Public Health Consequences of Global Population Aging: Implications for Social Work Practice and Public Policy;Kaplan;J. Soc. Work Glob. Community,2017

5. Population Aging in the European Information Societies: Towards a Comprehensive Research Agenda in EHealth Innovations for Elderly;Vancea;Aging Dis.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3