High Nitrate or Ammonium Applications Alleviated Photosynthetic Decline of Phoebe bournei Seedlings under Elevated Carbon Dioxide

Author:

Wang Xiao,Wei Xiaoli,Wu Gaoyin,Chen Shenqun

Abstract

Phoebe bournei is a precioustimber species and is listed as a national secondary protection plant in China. However, seedlings show obvious photosynthetic declinewhen grown long-term under an elevated CO2 concentration (eCO2). The global CO2 concentration is predicted to reach 700 μmol·mol−1 by the end of this century; however, little is known about what causes the photosynthetic decline of P. bournei seedlings under eCO2 or whether this photosynthetic decline could be controlled by fertilization measures. To explore this problem, one-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) concentration (350 ± 70 μmol·mol−1) or an eCO2 concentration (700 ± 10 μmol·mol−1) from June 12th to September 8th and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. Under eCO2, the net photosynthetic rate (Pn) of P. bournei seedlings treated with a moderate nitrate application was 27.0% lower than that of seedlings grown under an aCO2 concentration (p < 0.05), and photosynthetic declineappeared to be accompanied by a reduction of the electron transport rate (ETR), actual photochemical efficiency, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), rubisco activase (RCA) content, leaf thickness, and stomatal density. The Pn of seedlings treated with a high application of nitrate under eCO2 was 5.0% lower than that of seedlings grown under aCO2 (p > 0.05), and photosynthetic declineoccurred more slowly, accompanied by a significant increase in rubisco content, RCA content, and stomatal density. The Pn of P. bournei seedlings treated with either a moderate or a high application of ammonium and grown under eCO2 was not significantly differentto that of seedlings grown under aCO2—there was no photosynthetic decline—and the ETR, chlorophyll content, rubisco content, RCA content, and leaf thickness values were all increased. Increasing the application of nitrate or the supply of ammonium could slow down or prevent the photosynthetic declineof P. bournei seedlings under eCO2 by changing the leaf structure and photosynthetic physiological characteristics.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3