Abstract
Background: Gait is often impaired in people after stroke, restricting personal independence and affecting quality of life. During stroke rehabilitation, walking capacity is conventionally assessed by measuring walking distance and speed. Gait features, such as asymmetry and variability, are not routinely determined, but may provide more specific insights into the patient’s walking capacity. Inertial measurement units offer a feasible and promising tool to determine these gait features. Objective: We examined the test–retest reliability of inertial measurement units-based gait features measured in a two-minute walking assessment in people after stroke and while in clinical rehabilitation. Method: Thirty-one people after stroke performed two assessments with a test–retest interval of 24 h. Each assessment consisted of a two-minute walking test on a 14-m walking path. Participants were equipped with three inertial measurement units, placed at both feet and at the low back. In total, 166 gait features were calculated for each assessment, consisting of spatio-temporal (56), frequency (26), complexity (63), and asymmetry (14) features. The reliability was determined using the intraclass correlation coefficient. Additionally, the minimal detectable change and the relative minimal detectable change were computed. Results: Overall, 107 gait features had good–excellent reliability, consisting of 50 spatio-temporal, 8 frequency, 36 complexity, and 13 symmetry features. The relative minimal detectable change of these features ranged between 0.5 and 1.5 standard deviations. Conclusion: Gait can reliably be assessed in people after stroke in clinical stroke rehabilitation using three inertial measurement units.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献