Abstract
In certain situations, internal insulation is the only possible renovation option. However, it is risky where there is high humidity in a building and ventilation is not working sufficiently. The internal insulation retrofit changes the original thermal and moisture balance of a wall, therefore, it is necessary to carefully design it already at the initial stage. This paper analyses four interior insulation systems based on open diffusion capillary active materials: wood fibreboards (flex and rigid), perlite boards, and microporous calcium silicate. The hygrothermal performance under the climatic conditions of Central Europe (Poland) was assessed using the WUFI Plus software, taking into account the dynamic variation of indoor and outdoor conditions. The analysis included three insulation thicknesses with different ventilation rates and varying moisture loads. The results show that the hygrothermal properties of the wall change with the increase of insulation thickness and depend on the individual moisture properties of the material. In addition, both the reduction of moisture load and more intensive air exchange improve the hygrothermal properties at the interface between the insulation and the wall. Of all the solutions analysed, the system with perlite board and the system with wood fibreboard showed the worst hygric properties. Conversely, the highest risk of mould and interstitial condensation was recorded for the flex wood fibreboard solution.
Subject
General Materials Science