Survey of Localizing Gradient Damage in Static and Dynamic Tension of Concrete

Author:

Wosatko AdamORCID

Abstract

The continuum damage model should be regularized to ensure mesh-insensitive results in simulations of strain localization, e.g., for concrete cracking under tension. The paper confronts the conventional gradient damage model with its upgrade including a variable internal length scale. In these models, the Helmholtz free energy depends additionally on an averaged strain measure and its gradient. In the formulation for dynamics the equations of motion are discretized simultaneously with an averaging equation. If gradient regularization is employed with a constant internal length parameter, then an artificially expanded damage zone can occur in the strain softening analysis. This broadening effect can be inhibited by a gradient activity function. The localizing character of the gradient activity has physical motivation—the nonlocal interactions in the fracture zone are reduced with the damage growth. The internal length can decrease exponentially or as a cosine function. After presentation of the theory, including the free energy definition, the finite element analyses of three different examples connected with tensile cracking in concrete are discussed: static tension of a double-edge-notched specimen, dynamic direct tension for a configuration without or with a reinforcing bar and tension of an L-shaped specimen under static and dynamic loading.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3