Functionally Graded Al2O3–CTZ Ceramics Fabricated by Spark Plasma Sintering

Author:

Bódis EszterORCID,Jakab Miklós,Bán Krisztián,Károly ZoltánORCID

Abstract

We studied the fabrication of functionally graded Al2O3–CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3–CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 µm for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3–CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.

Funder

Hungarian National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

General Materials Science

Reference57 articles.

1. Functionally graded material: An overview;Mahamood;Lect. Notes Eng. Comput. Sci.,2012

2. Functionally Graded Materials: An Overview of Dental Applications

3. Functionally Graded Ceramics

4. Functionally Graded Materials: Design, Processing and Application;Miyamoto,1999

5. Dental prostheses mimic the natural enamel behavior under functional loading: A review article

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3