Affiliation:
1. Department of Computer Sciences, College of Computers and Information Technology, Taif University, Taif 26571, Saudi Arabia
Abstract
In this paper, a framework for simultaneous tracking and recognizing drone targets using a low-cost and small-sized millimeter-wave radar is presented. The radar collects the reflected signals of multiple targets in the field of view, including drone and non-drone targets. The analysis of the received signals allows multiple targets to be distinguished because of their different reflection patterns. The proposed framework consists of four processes: signal processing, cloud point clustering, target tracking, and target recognition. Signal processing translates the raw collected signals into spare cloud points. These points are merged into several clusters, each representing a single target in three-dimensional space. Target tracking estimates the new location of each detected target. A novel convolutional neural network model was designed to extract and recognize the features of drone and non-drone targets. For the performance evaluation, a dataset collected with an IWR6843ISK mmWave sensor by Texas Instruments was used for training and testing the convolutional neural network. The proposed recognition model achieved accuracies of 98.4% and 98.1% for one and two targets, respectively.
Funder
The Deanship of Scientific Research at Taif University
Subject
Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献