Author:
Horng Shih-Cheng,Lin Shieh-Shing
Abstract
Probabilistic constrained simulation optimization problems (PCSOP) are concerned with allocating limited resources to achieve a stochastic objective function subject to a probabilistic inequality constraint. The PCSOP are NP-hard problems whose goal is to find optimal solutions using simulation in a large search space. An efficient “Ordinal Optimization (OO)” theory has been utilized to solve NP-hard problems for determining an outstanding solution in a reasonable amount of time. OO theory to solve NP-hard problems is an effective method, but the probabilistic inequality constraint will greatly decrease the effectiveness and efficiency. In this work, a method that embeds ordinal optimization (OO) into tree–seed algorithm (TSA) (OOTSA) is firstly proposed for solving the PCSOP. The OOTSA method consists of three modules: surrogate model, exploration and exploitation. Then, the proposed OOTSA approach is applied to minimize the expected lead time of semi-finished products in a pull-type production system, which is formulated as a PCSOP that comprises a well-defined search space. Test results obtained by the OOTSA are compared with the results obtained by three heuristic approaches. Simulation results demonstrate that the OOTSA method yields an outstanding solution of much higher computing efficiency with much higher quality than three heuristic approaches.
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献