Upscaling of Surface Water and Groundwater Interactions in Hyporheic Zone from Local to Regional Scale

Author:

Akhtar NaseemORCID,Syakir Muhammad I.,Ahmad Mardiana IdayuORCID,Anees Mohd TalhaORCID,Bin Abu Bakar Ahmad Farid,Mizan Syed AdilORCID,Alsaadi Sami Farraj,Khan Mohammad Muqtada AliORCID,Yusuff Mohamad Shaiful MdORCID

Abstract

The groundwater (GW) and surface water (SW) interaction (SW-GW) through the hyporheic zone is a significant component in sustainable water resource management. The complexities in SW-GW interactions increase from a local to a regional scale and are affected by variation in hydraulic, hydrologic, and hydrogeologic (3H) processes. Controlling factors and their upscaling of these processes to assess SW-GW interaction have not been addressed sufficiently in previous studies. Additionally, it is unclear what the effective factors are at different scales during the upscaling. Therefore, the present review focused on controlling factors of 3H processes in SW-GW interaction and their upscaling techniques. Relevancy of controlling factors was identified at different scales. Applications of different approaches and their uncertainties were also discussed for the characterization of SW-GW interactions. The study revealed that the improved data from different approaches is crucial for machine learning training and its application in the SW and GW assessment at local, sub-catchment, and catchment scales. Based on the outcomes, a framework has been proposed to execute modalities of controlling factors using remote sensing, geophysics, and artificial intelligence. The proposed framework could help in handling big data and accurate upscaling for water resource management.

Funder

Universiti Sains Malaysia

University of Malaya

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3