Assessing the Groundwater Reserves of the Udaipur District, Aravalli Range, India, Using Geospatial Techniques

Author:

Shyam Megha,Meraj GowharORCID,Kanga ShrutiORCID,Sudhanshu ,Farooq MajidORCID,Singh Suraj KumarORCID,Sahu NetranandaORCID,Kumar PankajORCID

Abstract

Population increase has placed ever-increasing demands on the available groundwater (GW) resources, particularly for intensive agricultural activities. In India, groundwater is the backbone of agriculture and drinking purposes. In the present study, an assessment of groundwater reserves was carried out in the Udaipur district, Aravalli range, India. It was observed that the principal aquifer for the availability of groundwater in the studied area is quartzite, phyllite, gneisses, schist, and dolomitic marble, which occur in unconfined to semi-confined zones. Furthermore, all primary chemical ingredients were found within the permissible limit, including granum. We also found that the average annual rainfall days in a year in the study area was 30 from 1957 to 2020, and it has been found that there are chances to receive surplus rainfall once in every five deficit rainfall years. Using integrated remote sensing, GIS, and a field-based spatial modeling approach, it was found that the dynamic GW reserves of the area are 637.42 mcm/annum, and the total groundwater draft is 639.67 mcm/annum. The deficit GW reserves are 2.25 mcm/annum from an average rainfall of 627 mm, hence the stage of groundwater development is 100.67% and categorized as over-exploited. However, as per the relationship between reserves and rainfall events, surplus reserves are available when rainfall exceeds 700 mm. We conclude that enough static GW reserves are available in the studied area to sustain the requirements of the drought period. For the long-term sustainability of groundwater use, controlling groundwater abstraction by optimizing its use, managing it properly through techniques such as sprinkler and drip irrigation, and achieving more crop-per-drop schemes, will go a long way to conserving this essential reserve, and create maximum groundwater recharge structures.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3