Predicting Facial Attractiveness from Colour Cues: A New Analytic Framework

Author:

Lu Yan12ORCID,Xiao Kaida1ORCID,Pointer Michael1,Lin Yandan3ORCID

Affiliation:

1. School of Design, University of Leeds, Leeds LS2 9JT, UK

2. Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK

3. School of Information Science and Technology, Fudan University, Shanghai 200433, China

Abstract

Various facial colour cues were identified as valid predictors of facial attractiveness, yet the conventional univariate approach has simplified the complex nature of attractiveness judgement for real human faces. Predicting attractiveness from colour cues is difficult due to the high number of candidate variables and their inherent correlations. Using datasets from Chinese subjects, this study proposed a novel analytic framework for modelling attractiveness from various colour characteristics. One hundred images of real human faces were used in experiments and an extensive set of 65 colour features were extracted. Two separate attractiveness evaluation sets of data were collected through psychophysical experiments in the UK and China as training and testing datasets, respectively. Eight multivariate regression strategies were compared for their predictive accuracy and simplicity. The proposed methodology achieved a comprehensive assessment of diverse facial colour features and their role in attractiveness judgements of real faces; improved the predictive accuracy (the best-fit model achieved an out-of-sample accuracy of 0.66 on a 7-point scale) and significantly mitigated the issue of model overfitting; and effectively simplified the model and identified the most important colour features. It can serve as a useful and repeatable analytic tool for future research on facial impression modelling using high-dimensional datasets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3