Efficient Model Updating of a Prefabricated Tall Building by a DNN Method

Author:

Liu Chunqing1ORCID,Zhang Fengliang1ORCID,Ni Yanchun23ORCID,Ai Botao1,Zhu Siyan1,Zhao Zezhou1,Fu Shengjie1

Affiliation:

1. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

3. Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

The significance of model updating methods is becoming increasingly evident as the demand for greater precision in numerical models rises. In recent years, with the advancement of deep learning technology, model updating methods based on various deep learning algorithms have begun to emerge. These methods tend to be complicated in terms of methodological architectures and mathematical processes. This paper introduces an innovative model updating approach using a deep learning model: the deep neural network (DNN). This approach diverges from conventional methods by streamlining the process, directly utilizing the results of modal analysis and numerical model simulations as deep learning input, bypassing any additional complex mathematical calculations. Moreover, with a minimalist neural network architecture, a model updating method has been developed that achieves both accuracy and efficiency. This distinctive application of DNN has seldom been applied previously to model updating. Furthermore, this research investigates the impact of prefabricated partition walls on the overall stiffness of buildings, a field that has received limited attention in the previous studies. The main finding was that the deep neural network method achieved a Modal Assurance Criterion (MAC) value exceeding 0.99 for model updating in the minimally disturbed 1st and 2nd order modes when compared to actual measurements. Additionally, it was discovered that prefabricated partitions exhibited a stiffness ratio of about 0.2–0.3 compared to shear walls of the same material and thickness, emphasizing their role in structural behavior.

Funder

Key Technology Research and Development Program of Guizhou Province under Grant Qian Ke Research and Development

Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3