Abstract
Images captured by sensors in unpleasant environment like low illumination condition are usually degraded, which means low visibility, low brightness, and low contrast. In order to improve this kind of images, in this paper, a low-light sensor image enhancement algorithm based on HSI color model is proposed. At first, we propose a dataset generation method based on the Retinex model to overcome the shortage of sample data. Then, the original low-light image is transformed from RGB to HSI color space. The segmentation exponential method is used to process the saturation (S) and the specially designed Deep Convolutional Neural Network is applied to enhance the intensity component (I). At the end, we back into the original RGB space to get the final improved image. Experimental results show that the proposed algorithm not only enhances the image brightness and contrast significantly, but also avoids color distortion and over-enhancement in comparison with some other state-of-the-art research papers. So, it effectively improves the quality of sensor images.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献