Towards a Predictive Bio-Inspired Navigation Model

Author:

Gay Simon,Le Run KévinORCID,Pissaloux EdwigeORCID,Romeo KaterineORCID,Lecomte Christèle

Abstract

This paper presents a novel bio-inspired predictive model of visual navigation inspired by mammalian navigation. This model takes inspiration from specific types of neurons observed in the brain, namely place cells, grid cells and head direction cells. In the proposed model, place cells are structures that store and connect local representations of the explored environment, grid and head direction cells make predictions based on these representations to define the position of the agent in a place cell’s reference frame. This specific use of navigation cells has three advantages: First, the environment representations are stored by place cells and require only a few spatialized descriptors or elements, making this model suitable for the integration of large-scale environments (indoor and outdoor). Second, the grid cell modules act as an efficient visual and absolute odometry system. Finally, the model provides sequential spatial tracking that can integrate and track an agent in redundant environments or environments with very few or no distinctive cues, while being very robust to environmental changes. This paper focuses on the architecture formalization and the main elements and properties of this model. The model has been successfully validated on basic functions: mapping, guidance, homing, and finding shortcuts. The precision of the estimated position of the agent and the robustness to environmental changes during navigation were shown to be satisfactory. The proposed predictive model is intended to be used on autonomous platforms, but also to assist visually impaired people in their mobility.

Publisher

MDPI AG

Subject

Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3