Nanoparticle Assisted EOR during Sand-Pack Flooding: Electrical Tomography to Assess Flow Dynamics and Oil Recovery

Author:

Nwufoh Phillip,Hu Zhongliang,Wen Dongsheng,Wang Mi

Abstract

Silica nanoparticles have been shown to exhibit many characteristics that allow for additional oil to be recovered during sand-pack flooding experiments. Additionally various imaging techniques have been employed in the past to visually compare flooding procedures including x-ray computed tomography and magnetic resonance imaging; however, these techniques require the sample to be destroyed or sliced after the flooding experiment finishes. Electrical resistance tomography (ERT) overcomes these limitations by offering a non-destructive visualization method allowing for online images to be taken during the flooding process by the determination of spatial distribution of electrical resistivity, thus making it suitable for sand-packs. During the scope of this research a new sand-pack system and methodology was created which utilized ERT as a monitoring tool. Two concentrations, 0.5 wt% and 1.0 wt%, of SiO2 nanoparticles were compared with runs using only brine to compare the recovery efficiency and explore the ability of ERT to monitor the flooding process. Electrical resistance tomography was found to be an effective tool in monitoring local recovery efficiency revealing 1.0 wt% SiO2 to be more effective than 0.5 wt% and brine only runs during the scope of this research. A new method involving the slope function in excel was used to compare the effects of nanofluids on resistivity trends also revealing information about the rate of recovery against time. SiO2 nanofluid recovery mechanisms such interfacial tension reduction and viscosity enhancement were then considered to explain why the nanofluids resulted in greater oil recovery.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3