A Heterogeneous IoT Data Analysis Framework with Collaboration of Edge-Cloud Computing: Focusing on Indoor PM10 and PM2.5 Status Prediction

Author:

Moon Jaewon,Kum Seungwoo,Lee SangwonORCID

Abstract

The edge platform has evolved to become a part of a distributed computing environment. While typical edges do not have enough processing power to train machine learning models in real time, it is common to generate models in the cloud for use on the edge. The pattern of heterogeneous Internet of Things (IoT) data is dependent on individual circumstances. It is not easy to guarantee prediction performance when a monolithic model is used without considering the spatial characteristics of the space generating those data. In this paper, we propose a collaborative framework using a new method to select the best model for the edge from candidate models of cloud based on sample data correlation. This method lets the edge use the most suitable model without any training tasks on the edge side, and it also minimizes privacy issues. We apply the proposed method to predict future fine particulate matter concentration in an individual space. The results suggest that our method can provide better performance than the previous method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3