AI-Enhanced Analysis Reveals Impact of Maternal Diabetes on Subcutaneous Fat Mass in Fetuses without Growth Alterations

Author:

Borboa-Olivares Hector1ORCID,Torres-Torres Johnatan2ORCID,Flores-Pliego Arturo3,Espejel-Nuñez Aurora3ORCID,Camacho-Arroyo Ignacio4,Guzman-Huerta Mario5,Perichart-Perera Otilia6,Piña-Ramirez Omar7,Estrada-Gutierrez Guadalupe8

Affiliation:

1. Community Interventions Research Branch, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

2. Clinical Research Division, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

3. Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

4. Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatologia-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico

5. Department of Translational Medicine, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

6. Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

7. Bioinformatics and Statistical Analysis Department, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

8. Research Division, Instituto Nacional de Perinatología, Mexico City 11000, Mexico

Abstract

Pregnant women with diabetes often present impaired fetal growth, which is less common if maternal diabetes is well-controlled. However, developing strategies to estimate fetal body composition beyond fetal growth that could better predict metabolic complications later in life is essential. This study aimed to evaluate subcutaneous fat tissue (femur and humerus) in fetuses with normal growth among pregnant women with well-controlled diabetes using a reproducible 3D-ultrasound tool and offline TUI (Tomographic Ultrasound Imaging) analysis. Additionally, three artificial intelligence classifier models were trained and validated to assess the clinical utility of the fetal subcutaneous fat measurement. A significantly larger subcutaneous fat area was found in three-femur and two-humerus selected segments of fetuses from women with diabetes compared to the healthy pregnant control group. The full classifier model that includes subcutaneous fat measure, gestational age, fetal weight, fetal abdominal circumference, maternal body mass index, and fetal weight percentile as variables, showed the best performance, with a detection rate of 70%, considering a false positive rate of 10%, and a positive predictive value of 82%. These findings provide valuable insights into the impact of maternal diabetes on fetal subcutaneous fat tissue as a variable independent of fetal growth.

Funder

Instituto Nacional de Perinatologia in Mexico City

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3