Phase Noise Analysis of Time Transfer over White Rabbit-Network Based Optical Fibre Links

Author:

Neelam 123ORCID,Kandeepan Sithamparanathan1ORCID,Panja Subhasis23ORCID

Affiliation:

1. School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC 3000, Australia

2. CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India

3. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India

Abstract

White Rabbit (WR) is an optical fibre-based time-frequency synchronization technology typically used in timekeeping laboratories for distributing time-frequency signals from a reference clock to distant locations. The accuracy of the received signals at the user end can be affected by random noise processes present in the WR network due to the internal electronic components of WR devices. In this paper, we investigate the presence of random noise processes in the WR network. We then study their statistical properties and model the distribution based on experimentally recorded measurements. According to our study, the probability density function (PDF) follows a Gaussian mixture model (GMM) with varying distribution parameters, and the correlation analysis indicates a strong correlation of the phase noise process over the temporal samples. Furthermore, the developed phase noise models have also been verified by comparing them against additional experimental data. Finally, we present the methodology to generate the phase noise process using computer simulations with the PDF and correlation models developed in this work to help algorithm developers and equipment manufacturers make use of our results.

Funder

University Grant Commission (UGC), India

Royal Melbourne Institute of Technology (RMIT), Australia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3