Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data

Author:

Jiang Xia,Xu Chuhan

Abstract

Background: It is important to be able to predict, for each individual patient, the likelihood of later metastatic occurrence, because the prediction can guide treatment plans tailored to a specific patient to prevent metastasis and to help avoid under-treatment or over-treatment. Deep neural network (DNN) learning, commonly referred to as deep learning, has become popular due to its success in image detection and prediction, but questions such as whether deep learning outperforms other machine learning methods when using non-image clinical data remain unanswered. Grid search has been introduced to deep learning hyperparameter tuning for the purpose of improving its prediction performance, but the effect of grid search on other machine learning methods are under-studied. In this research, we take the empirical approach to study the performance of deep learning and other machine learning methods when using non-image clinical data to predict the occurrence of breast cancer metastasis (BCM) 5, 10, or 15 years after the initial treatment. We developed prediction models using the deep feedforward neural network (DFNN) methods, as well as models using nine other machine learning methods, including naïve Bayes (NB), logistic regression (LR), support vector machine (SVM), LASSO, decision tree (DT), k-nearest neighbor (KNN), random forest (RF), AdaBoost (ADB), and XGBoost (XGB). We used grid search to tune hyperparameters for all methods. We then compared our feedforward deep learning models to the models trained using the nine other machine learning methods. Results: Based on the mean test AUC (Area under the ROC Curve) results, DFNN ranks 6th, 4th, and 3rd when predicting 5-year, 10-year, and 15-year BCM, respectively, out of 10 methods. The top performing methods in predicting 5-year BCM are XGB (1st), RF (2nd), and KNN (3rd). For predicting 10-year BCM, the top performers are XGB (1st), RF (2nd), and NB (3rd). Finally, for 15-year BCM, the top performers are SVM (1st), LR and LASSO (tied for 2nd), and DFNN (3rd). The ensemble methods RF and XGB outperform other methods when data are less balanced, while SVM, LR, LASSO, and DFNN outperform other methods when data are more balanced. Our statistical testing results show that at a significance level of 0.05, DFNN overall performs comparably to other machine learning methods when predicting 5-year, 10-year, and 15-year BCM. Conclusions: Our results show that deep learning with grid search overall performs at least as well as other machine learning methods when using non-image clinical data. It is interesting to note that some of the other machine learning methods, such as XGB, RF, and SVM, are very strong competitors of DFNN when incorporating grid search. It is also worth noting that the computation time required to do grid search with DFNN is much more than that required to do grid search with the other nine machine learning methods.

Funder

United States Department of Defense

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3