Deep Learning for the Automatic Segmentation of Extracranial Venous Malformations of the Head and Neck from MR Images Using 3D U-Net

Author:

Ryu Jeong YeopORCID,Hong Hyun KiORCID,Cho Hyun GeunORCID,Lee Joon Seok,Yoo Byeong Cheol,Choi Min Hyeok,Chung Ho YunORCID

Abstract

Background: It is difficult to characterize extracranial venous malformations (VMs) of the head and neck region from magnetic resonance imaging (MRI) manually and one at a time. We attempted to perform the automatic segmentation of lesions from MRI of extracranial VMs using a convolutional neural network as a deep learning tool. Methods: T2-weighted MRI from 53 patients with extracranial VMs in the head and neck region was used for annotations. Preprocessing management was performed before training. Three-dimensional U-Net was used as a segmentation model. Dice similarity coefficients were evaluated along with other indicators. Results: Dice similarity coefficients in 3D U-Net were found to be 99.75% in the training set and 60.62% in the test set. The models showed overfitting, which can be resolved with a larger number of objects, i.e., MRI VM images. Conclusions: Our pilot study showed sufficient potential for the automatic segmentation of extracranial VMs through deep learning using MR images from VM patients. The overfitting phenomenon observed will be resolved with a larger number of MRI VM images.

Funder

Biomedical Research Institute grant, Kyungpook National University Hospital

Publisher

MDPI AG

Subject

General Medicine

Reference26 articles.

1. Hemangiomas and Vascular Malformations in Infants and Children

2. ISSVA Classification for Vascular Anomalies © 2018 International Society for the Study of Vascular Anomalies https://www.issva.org/classification

3. Surgical approach for venous malformation in the head and neck

4. Vascular anomalies;Greene,2017

5. Venous malformations of the head and neck: A retrospective review of 82 cases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3