An Evaluation of Phase Analysis to Interpret Atrial Activation Patterns during Persistent Atrial Fibrillation for Targeted Ablation

Author:

Lee SeungyupORCID,Khrestian Celeen M.,Sahadevan Jayakumar,Waldo Albert L.

Abstract

Background: Phase analysis has been used to identify and localize atrial fibrillation (AF) sources for targeted ablation. We previously demonstrated that repetitive wannabe reentry (incomplete reentry) often generated an apparent stable rotor using phase analysis. The misinterpretation caused by phase analysis using atrial electrograms (AEGs) may result from detecting inaccurate time points at phase inversion (π to −π) in the instantaneous phase waveform converted from AEG. The purpose of this study was to evaluate the accuracy of phase analysis to detect atrial activations recorded from the high-density mapping of AF in patients with persistent and long-standing persistent (LSP) AF. Methods and Results: During open heart surgery, we recorded activation from both atria simultaneously using 512 electrodes in 7 patients with persistent and LSP AF. The phase analysis was compared to manual measurements during 4 s of data. For the accuracy of activation sequence maps, a successful recording site was defined as having ≤4 mismatched activation times during the 4 s. In all AF episodes, the accuracy of the phase analysis was only 82% of the total number of activation times due to either activation time differences (14.7%), under-sensing (2.7%), or over-sensing (0.6%). Only 67.9% of the total recording sites met the requirement of a successful recording site by phase analysis. In unsuccessful recording sites, AEG characteristics were relatively irregular cycle length (CL), complex AEG, and double potential AEG. Conclusion: The phase analysis was less accurate in recording sites with a relatively irregular CL, complex AEG, or double potential AEG. As a result, phase analysis may lead to the misinterpretation of atrial activation patterns during AF. A visual review of the original AEG is needed to confirm the detected AF sources of phase analysis before performing targeted ablation.

Funder

National Heart Lung and Blood Institute

Elisabeth Severance Prentiss Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3