Robust Tightly Coupled Pose Measurement Based on Multi-Sensor Fusion in Mobile Robot System

Author:

Peng Gang,Lu Zezao,Peng JiaxiORCID,He Dingxin,Li Xinde,Hu Bin

Abstract

Currently, simultaneous localization and mapping (SLAM) is one of the main research topics in the robotics field. Visual-inertia SLAM, which consists of a camera and an inertial measurement unit (IMU), can significantly improve robustness and enable scale weak-visibility, whereas monocular visual SLAM is scale-invisible. For ground mobile robots, the introduction of a wheel speed sensor can solve the scale weak-visibility problem and improve robustness under abnormal conditions. In this paper, a multi-sensor fusion SLAM algorithm using monocular vision, inertia, and wheel speed measurements is proposed. The sensor measurements are combined in a tightly coupled manner, and a nonlinear optimization method is used to maximize the posterior probability to solve the optimal state estimation. Loop detection and back-end optimization are added to help reduce or even eliminate the cumulative error of the estimated poses, thus ensuring global consistency of the trajectory and map. The outstanding contribution of this paper is that the wheel odometer pre-integration algorithm, which combines the chassis speed and IMU angular speed, can avoid the repeated integration caused by linearization point changes during iterative optimization; state initialization based on the wheel odometer and IMU enables a quick and reliable calculation of the initial state values required by the state estimator in both stationary and moving states. Comparative experiments were conducted in room-scale scenes, building scale scenes, and visual loss scenarios. The results showed that the proposed algorithm is highly accurate—2.2 m of cumulative error after moving 812 m (0.28%, loopback optimization disabled)—robust, and has an effective localization capability even in the event of sensor loss, including visual loss. The accuracy and robustness of the proposed method are superior to those of monocular visual inertia SLAM and traditional wheel odometers.

Funder

National Natural Science Foundation of China

Hubei Province Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference19 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shaped-Based Tightly Coupled IMU/Camera Object-Level SLAM;Sensors;2023-09-18

2. A Smoothing and Mapping Tightly Coupled Multi-modal Fusion Autonomous Navigation Method;2023 2nd Conference on Fully Actuated System Theory and Applications (CFASTA);2023-07-14

3. Tightly-Coupled Fusion of VINS and Motion Constraint for Autonomous Vehicle;IEEE Transactions on Vehicular Technology;2022-06

4. An SLAM Algorithm Based on Laser Radar and Vision Fusion with Loop Detection Optimization;Journal of Physics: Conference Series;2022-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3