Abstract
In order to improve the accuracy of signal recovery after transmitting over atmospheric turbulence channel, a deep-learning-based signal detection method is proposed for a faster-than-Nyquist (FTN) hybrid modulated optical wireless communication (OWC) system. It takes advantage of the long short-term memory (LSTM) network in the recurrent neural network (RNN) to alleviate the interdependence problem of adjacent symbols. Moreover, an LSTM attention decoder is constructed by employing the attention mechanism, which can alleviate the shortcomings in conventional LSTM. The simulation results show that the bit error rate (BER) performance of the proposed LSTM attention neural network is 1 dB better than that of the back propagation (BP) neural network and outperforms by 2.5 dB when compared with the maximum likelihood sequence estimation (MLSE) detection method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献