Dose–Response Effects of Bamboo Leaves on Rumen Methane Production, Fermentation Characteristics, and Microbial Abundance In Vitro

Author:

Jo Seong UkORCID,Lee Shin JaORCID,Kim Hyun SangORCID,Eom Jun SikORCID,Choi YouyoungORCID,Lee Yookyung,Lee Sung SillORCID

Abstract

Ruminants produce large amounts of methane as part of their normal digestive processes. Recently, feed additives were shown to inhibit the microorganisms that produce methane in the rumen, consequently reducing methane emissions. The objective of this study was to evaluate the dose–response effect of Phyllostachys nigra var. henonis (PHN) and Sasa borealis supplementation on in vitro rumen fermentation, methane, and carbon dioxide production, and the microbial population. An in vitro batch culture system was used, incubated without bamboo leaves (control) or with bamboo leaves (0.3, 0.6, and 0.9 g/L). After 48 h, total gas, methane, and carbon dioxide production decreased linearly with an increasing dose of bamboo leaves supplementation. The total volatile fatty acid, acetate, and acetate-to-propionate ratio were affected quadratically with increasing doses of bamboo leaves supplementation. In addition, propionate decreased linearly. Butyrate was increased linearly with increasing doses of PHN supplementation. The absolute values of total bacteria and methanogenic archaea decreased linearly and quadratically with an increasing dose of PHN treatment after 48 h. These results show that bamboo leaves supplementation can reduce methane production by directly affecting methanogenic archaea, depressing the metabolism of methanogenic microbes, or transforming the composition of the methanogenic community. These results need to be validated using in vivo feeding trials before implementation.

Funder

National Institute of Animal Science

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference65 articles.

1. Methane emissions from cattle

2. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment;Opio,2013

3. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities;Gerber,2013

4. Estimates of animal methane emissions

5. Methane Production in Ruminants and Its Significance;Czerkawski;World Rev. Nutr. Diet.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3