Exploiting Capture Diversity for Performance Enhancement of ALOHA-Based Multi-Static Backscattering Systems in the 6G Perspective

Author:

Valentini RobertoORCID,Di Marco Piergiuseppe,Santucci Fortunato

Abstract

In this paper, we consider the emerging context of ALOHA-based multi-static backscattering communication systems. By assuming an architecture consisting of a set of passive backscattering nodes, an illuminator, and a set of spatially dislocated receivers, we firstly propose a cross-layer framework for performance analysis. The model jointly accounts for the shared wireless channel, including fading and capture effect, and channel contention strategy, which is regulated by a Framed Slotted ALOHA protocol. Furthermore, based on the inherent macroscopic diversity offered by the multi-static settings, we introduce the concept of capture diversity, which is shown to enable multiple packet detection in slots with multiple transmissions. In order to characterize the multiple access interference and approximate the capture probabilities, we enforce a log-normal approximation of the inverse Signal-to-Interference Ratio that relies on moment matching. Numerical results show the impact of deployment scenarios and the relative positions of illuminator, backscattering nodes, and receivers on the system normalized throughput. We show how the number of detection points impacts the system performance under various channel conditions. Moreover, the accuracy of the proposed approximation rationale is validated via Monte Carlo simulations. Finally, we analyze the optimal frame length in the presence of capture diversity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting NOMA systems through smart metasurfaces;Frontiers in Communications and Networks;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3