Stress Estimation Using Digital Image Correlation with Compensation of Camera Motion-Induced Error

Author:

Lee JunhwaORCID,Jeong SeunghooORCID,Lee Young-JooORCID,Sim Sung-HanORCID

Abstract

Measurement of stress levels from an in-service structure can provide important and useful information regarding the current state of a structure. The stress relaxation method (SRM) is the most conventional and practical method, which has been widely accepted for measuring residual stresses in metallic materials. The SRM showed strong potential for stress estimation of civil engineering structures, when combined with digital image correlation (DIC). However, the SRM/DIC methods studied thus far have practical issues regarding camera vibration during hole drilling. To minimize the error induced by the camera motion, the imaging system is installed at a distance from the specimen resulting in the low pixel density and the large extent of the inflicted damage. This study proposes an SRM/DIC-based stress estimation method that allows the camera to be removed during hole drilling and relocated to take the after-drilling image. Since the imaging system can be placed as close to the specimen as possible, a high pixel density can be achieved such that subtle displacement perturbation introduced by a small damage can be acquired by DIC. This study provides a detailed mathematical formulation for removing the camera relocation-induced false displacement field in the DIC result. The proposed method is validated numerically and experimentally.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Advances in Hole-Drilling Residual Stress Measurements

2. Laser shock processing and its effects on microstructure and properties of metal alloys: a review

3. Martensite in steel: strength and structure

4. Design of Concrete Structures;Nilson,1991

5. Determination of initial stresses by measuring the deformation around drilled holes;Mathar;Trans. ASME,1934

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3