Design and Performance of a Composite Grating-Coupled Surface Plasmon Resonance Trace Liquid Concentration Sensor

Author:

Li Wenchao,Li Zhiquan,He Jiahuan,Chu Liyang

Abstract

In this paper, a grating-coupled surface plasmon resonance concentration sensor employing a gold and indium tin oxide (Au/ITO) nanoparticle composite instead of metal is proposed. The structure and material parameters of the sensor are discussed and analyzed. Taking the ethylene glycol concentration as an example, the influence of the nanocomposite on the wave vector matching, the influence of the refractive index of the medium to be tested and the influence of the concentration on the refractive index were analyzed in detail. The experimental results show that when the sensor is used for the measurement of ethylene glycol concentration, the correlation coefficient between the concentration and the refractive index is as high as 0.999995. The fitting curve and data correlation are good, and the sensitivity has a good linear relationship with the sensitivity. Therefore, the sensor structure proposed in this paper can be used to accurately measure the trace concentration of liquid, and its sensing mode has certain reference value for the measurement of general trace fluid concentration.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3