A Systems Approach of Topology Optimization for Bioinspired Material Structures Design Using Additive Manufacturing

Author:

Ryan-Johnson William Patrick,Wolfe Larson Curtis,Byron Christopher Roder,Nagel Jacquelyn Kay,Zhang Hao

Abstract

Bioinspired design has been applied in sustainable design (e.g., lightweight structures) to learn from nature and support material structure functionalities. Natural structures usually require modification in practice because they were evolved in natural environmental conditions that can be different from industrial applications. Topology optimization is a method to find the optimal design solution by considering the material external physical environment. Therefore, integrating topology optimization into bioinspired design can benefit sustainable material structure designers in meeting the purpose of using bioinspired concepts to find the optimal solution in the material functional environment. Current research in both sustainable design and materials science, however, has not led to a method to assist material structure designers to design structures with bioinspired concepts and use topology optimization to find the optimal solution. Systems thinking can seamlessly fill this gap and provide a systemic methodology to achieve this goal. The objective of this research is to develop a systems approach that incorporates topology optimization into bioinspired design, and simultaneously takes into consideration additive manufacturing processing conditions to ensure the material structure functionality. The method is demonstrated with three lightweight material structure designs: spiderweb, turtle shell, and maze. Environmental impact assessment and finite element analysis were conducted to evaluate the functionality and emissions of the designs. This research contributes to the sustainable design knowledge by providing an innovative systems thinking-based bioinspired design of material structures. In addition, the research results enhance materials knowledge with an understanding of mechanical properties of three material structures: turtle shell, spiderweb, and maze. This research systemically connects four disciplines, including bioinspired design, manufacturing, systems thinking, and lightweight structure materials.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3