An Improved Inexact Two-Stage Stochastic with Downside Risk-Control Programming Model for Water Resource Allocation under the Dual Constraints of Water Pollution and Water Scarcity in Northern China

Author:

Meng Chong,Li Wei,Cheng Runhe,Zhou Siyang

Abstract

Water resource allocation aimed at sustainable watershed development suffers from prominent challenges such as water pollution and scarcity, especially in water-deprived regions. Based on analysis of water quality, use, and sectoral demands during the planning period in the Fenhe River Basin, an improved inexact two-stage stochastic programming model with downside risk control was built for optimal resource allocations for the four primary sectors (industry, domestic use, agriculture, and the environment) in the basin. The principal constraints are river water quality and available water resources under the three hydrological scenarios (low, medium, and high). The results show that industrial, domestic, and agricultural water use in the middle and lower reaches were significantly reduced by requiring improved water quality; agriculture suffered the greatest water shortage and risk. As the level of risk control improved, the comprehensive watershed benefits and agricultural risks were gradually reduced. Improving water reuse significantly reduces the risk and increases the benefits. The model can effectively manage rational water allocations under the dual constraints of water quality and quantity, meanwhile alleviating water competition caused by different water benefits to provide support for coordinating the improvement of water quality and socio-economic development in the basin.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3