Can a Priori Unknown Values of Biomechanical Parameters Be Determined with Sufficient Accuracy in MBS Using Sensitivity Analysis? Analyzing the Characteristics of the Interaction between Cervical Vertebra and Pedicle Screw

Author:

Kramer Ivanna,Bauer SabineORCID

Abstract

Finite element (FE) modeling is a commonly used method to investigate the influence of medical devices, such as implants and screws, on the biomechanical behavior of the spine. Another simulation method is multibody simulation (MBS), where the model is composed of several non-deformable bodies. MBS solvers generally require a very short computing time for dynamic tasks, compared with an FE analysis. Considering this computational advantage, in this study, we examine whether parameters for which values are not known a priori can be determined with sufficient accuracy using an MBS model. Therefore, we propose a many-at-a-time sensitivity analysis method that allows us to approximate these a priori unknown parameters without requiring long simulation times. This method enables a high degree of MBS model optimization to be achieved in an iterative process. The sensitivity analysis method was applied to a simplified screw–vertebra model, consisting of an anterior anchor implant screw and vertebral body of C4. An experiment described in the literature was used as the basis for developing and assessing the potential of the method for sensitivity analyses and for validating the model’s action. The optimal model parameters for the MBS model were determined to be c = 823,224 N/m for stiffness and d = 488 Ns/m for damping. The presented method of parameter identification can be used in studies including more complex MBS spine models or to set initial parameter values that are not available as initial values for FE models.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3