Applied Machine Learning on Phase of Gait Classification and Joint-Moment Regression

Author:

Jung ErikORCID,Lin CherylORCID,Contreras MartinORCID,Teodorescu MirceaORCID

Abstract

Traditionally, monitoring biomechanics parameters requires a significant amount of sensors to track exercises such as gait. Both research and clinical studies have relied on intricate motion capture studios to yield precise measurements of movement. We propose a method that captures motion independently of optical hardware with the specific goal of identifying the phases of gait using joint angle measurement approaches like IMU (inertial measurement units) sensors. We are proposing a machine learning approach to progressively reduce the feature number (joint angles) required to classify the phases of gait without a significant drop in accuracy. We found that reducing the feature number from six (every joint used) to three reduces the mean classification accuracy by only 4.04%, while reducing the feature number from three to two drops mean classification accuracy by 7.46%. We extended gait phase classification by using the biomechanics simulation package, OpenSim, to generalize a set of required maximum joint moments to transition between phases. We believe this method could be used for applications other than monitoring the phases of gait with direct application to medical and assistive technology fields.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3