Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice

Author:

Giarmatzis Georgios1ORCID,Fotiadou Styliani12ORCID,Giannakou Erasmia1,Karakasis Evangelos1,Vadikolias Konstantinos2,Aggelousis Nikolaos1ORCID

Affiliation:

1. Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece

2. Department of Neurology, School of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece

Abstract

This study aims to evaluate the consistency of musculoskeletal modelling outcomes during walking in chronic post-stroke patients, focusing on both affected and unaffected sides. Understanding the specific muscle forces involved is crucial for designing targeted rehabilitation strategies to improve balance and mobility after a stroke. Musculoskeletal modelling provides valuable insights into muscle and joint loading, aiding clinicians in analysing essential biomarkers and enhancing patients’ functional outcomes. However, the repeatability of these modelling outcomes in stroke gait has not been thoroughly explored until now. Twelve post-stroke, hemiparetic survivors were included in the study, which consisted of a gait analysis protocol to capture kinematic and kinetic variables. Two generic full body MSK models—Hamner (Ham) and Rajagopal (Raj)—were used to compute joint angles and muscle forces during walking, with combinations of two muscle force estimation algorithms (Static Optimisation (SO) and Computed Muscle Control (CMC)) and different joint degrees-of-freedoms (DOF). The multiple correlation coefficient (MCCoef) was used to compute repeatability for all forces, grouped based on anatomical function. Regardless of models and DOFs, the mean minimum (0.75) and maximum (0.94) MCCoefs denote moderate-to-excellent repeatability for all muscle groups. The combination of the Ham model and SO provided the most repeatable muscle force estimations of all the muscle groups except for the hip flexors, adductors and internal rotators. DOF configuration did not generally affect muscle force repeatability in the Ham–SO case, although the 311 seemed to relate to the highest values. Lastly, the DOF setting had a significant effect on some muscle groups’ force output, with the highest magnitudes reported for the 321 and 322 of non-paretic and paretic hip adductors and extensors, knee flexors and ankle dorsiflexors and paretic knee flexors. The primary findings of our study can assist users in selecting the most suitable modelling workflow and encourage the widespread adoption of MSK modelling in clinical practice.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3