An Experimental Method to Determine the Interstitial Splitting Forces and Thermal Load Input Induced by Self-Tapping and Self-Drilling Bone Screws: A Pilot Study

Author:

Ben Achour Anas,Petto Carola,Meißner Heike,Mostofa Anita,Teicher UweORCID,Haim Dominik,Ihlenfeldt Steffen,Lauer Günter

Abstract

Background: The aim is to evaluate methods to quantify the interstitial splitting force and thermal load input of self-tapping and self-drilling osteosynthesis screws. Methods: A specialized modular test bench was developed to measure the induced splitting force of self-drilling and self-tapping osteosynthesis screws using porcine mandibular bone. In addition, a fundamentally new approach to measure the temperature near the contact zone of osteosynthesis screws (fiber-optic sensor in the axis of the screw) was established. Results: The self-drilling screw type induces a splitting force of about 200 N in the surrounding tissue, so that microdamage of the bone and increased resorption can be assumed. Even pre-drilling induces a short-time force into the tissue, which is comparable to the splitting force of the self-tapping screw. The temperature increase in the screw is clearly higher compared to the temperature increase in the surrounding tissue, but no significant difference in temperature between the two screw types could be measured. Based on the measured temperatures of both screw types, the temperature increase in the contact zone is considered critical. Complications during the screwing process caused by the manual tool guidance resulted in numerous breakages of the fiber-optic sensors. Conclusions: The developed methods provide additional insight regarding the thermomechanical load input of self-drilling and self-tapping screws. However, based upon the optical fiber breakages, additional refinement of this technique may still be required.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3