Employing Robotics for the Biomechanical Validation of a Prosthetic Flipper for Sea Turtles as a Substitute for Animal Clinical Trials

Author:

van der Geest Nick1ORCID,Garcia Lorenzo1ORCID

Affiliation:

1. BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, City Campus, Auckland 1010, New Zealand

Abstract

Sea turtles are a keystone species for the ocean’s ecosystem, with all species currently being listed as endangered. Such a threat is mainly due to human factors such as fishing net entanglement. This entanglement often comes at the expense of turtles losing a pectoral flipper. The reduction in a sea turtle’s survival odds upon losing a flipper is a significant concern. This issue extends beyond individual animals, as the potential extinction of sea turtles could have detrimental effects on ocean health and subsequently disrupt our lifestyles. In this work, with the help of robotics, we tested the suitability of a prosthetic flipper for sea turtles that have lost a flipper. Testing with our sea-turtle-inspired robot helped to demonstrate the prosthetic flipper’s performance without clinical trials in live animals. The robot showed that the prosthetic could closely mimic the sea turtle’s downstroke and upstroke, allowing the animal to regain control in roll, pitch, and yaw, despite the absence of anatomical joints and related muscles. Additionally, swim speed tests provided an average swim speed of 0.487 m/s while dragging 6 m of cable to give a calculated maximum swim speed of 0.618 m/s, coming close to the average swim speed of wild sea turtles of 0.6 m/s. Our aspiration is that the findings from this study will pave the way for an open-source implant design, empowering veterinary professionals globally to aid injured turtles. Furthermore, this research promises to inspire additional animal-based robotic designs, advancing technologies geared towards assisting other animals in distress.

Publisher

MDPI AG

Subject

General Medicine

Reference24 articles.

1. Cultural Keystone Species: Implications for Ecological Conservation and Restoration;Garibaldi;Ecol. Soc.,2004

2. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity;Coleman;Trends Ecol. Evol.,2002

3. Dune vegetation fertilization by nesting sea turtles;Hannan;Ecology,2007

4. Jellyfish Aggregations and Leatherback Turtle Foraging Patterns in a Temperate Coastal Environment;Houghton;Ecology,2006

5. Niche partitioning between sea turtles in waters of a protected tropical island;Martins;Reg. Stud. Mar. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3